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For L* = {f:fEHP;j(Zk) = Wk' k = 1,2,... , m, IZk 1< 1, and IWk 1< l},
Macintyre, Rogosinski, and Shapiro showed that the function f * of L *
which minimizes

is of the form

K m-l men [(z - ci)/(l - CiZ)] n (1 - CiZ)2/P/ n (1 - Z;Z)2/P,
i=1 i=1 ;=1

where I Ci I < 1 and K ~ m - 1. The present paper suggests approximation
of f* by an iterative method using polynomials Pn(z) of degree m - 1. A
corresponding sequence of functions (In) is defined in such a way that,
under appropriate hypotheses, (In) converges to f*. To define fn from
fn-l , an adjustment is made in the values Wkn to which the polynomial Pn
is required to interpolate at the fixed points Zk' The method appears to be
appropriate for approximation of a function which is of the same form as
f * and assumes the given values wk at the designated points Zk • By Theorem 1,
such a function is f *. A Computer Science student at Purdue is attempting
to program the procedure.1

For given p, 1 ~ p ~ 00, HP = {f:f is analytic for IZ I < 1, and
Ilf(rz)llp is bounded for 0 < r < l}. On I Z I = l,fis defined almost every­
where as limr->l_f(rei8) where Z = rei8. Then HP C LP, with the norm

1 A sequel to this paper "Determination of Extremal Functions in HP by a Fortran
Program," to appear in SIAM J. Numer. Anal., reports on success of the Fortran Program
for this method in all cases tried, yielding 60 extremal functions.
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Ilflll> = {flzl=1 [fll> I dz /P/P < 00. The closed convex subset L* of U has
an essentially unique element /* such that 1[/* [Il> ~ IIfllp, fE HP. In this
paper /* is referred to as the minimizing function or element of L*. In the
definition of L*, some of the Zk are allowed to coincide, with the under­
standing that appropriate Wk are to be regarded as values assigned to deriva­
tives at those Zk .

1. EQUIVALENT PROBLEMS

We let Q be the polynomial of degree m - 1 such that Q(Zj) = Wj,
j = 1,... , m, and let B denote the Blaschke product

M

B(z) = n (z - Zj)/(1 - Zjz),
j=1

where M ~ m - 1.
If hE HP, then [Q(z) + h(z) n;':.1 (z - Zj)/(1 - Zjz)] E L*. On the other

hand, iffE L*, then (f - Q)IB E Hl>. For reference we state

LEMMA 1.1. /* minimizes I[flll>, fE L*, if and only if II(-QIB) - h I[l>,
hE HP, is minimized by h* = (+/* - Q)IB.

The solution of anyone of the following four problems yields a solution
to the others. (See the references of Rogosinski, Macintyre, and Shapiro.)
We set (lip) + (llq) = 1.

I. Determine/* E L* such that

[1/* Ill> ~ Ilf[Il>' fE L*.

II. Determine h* E Hl> such that

II(-QIB) - h* I[l> ~ [ie-QIB) - hill> ,

III. Determine g* E Hq such that

I(1/27Ti) f [(-Q(z)/B(z)] g(z) dz I

is maximal, for g E Hq, and I[ g I[q = 1.

IV. Determine C and Ci, i = 1,... , m - 1, I Ci I ~ 1, such that

m-l m

C[II'(zk - ci)/(l - Ch)] n (1 - C;Zk)2/l>/ n(1 - ZJZk)2/l> = Wk ,
;=1 j~1

k = l, ... ,m,

where the product II' is over some subset of {I, 2,... , m - I}.
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According to the above mentioned references, answers to the above
problems are known to be of the following forms thus related:

m

[(-Q(z)/B(z)) - h*(z)] n (z - Zj)/(1 - Zjz)
j~1

m-l m

= -f*(z) = ell'[(z - ci)/(l - CiZ)] n (1 - CiZ)2/P/ n (1 - ZjZ)2/P.
i~1 j~1

For Problem III,
m-l m

g*(z) = All"[(z - Ci)/(1 - ciz)] n (1 - CiZ)2/q/ n (1 - ZjZ)2/q,
i=1 j~1

where ll' and II" are complementary products of the Blaschke product
n:~1 (z - ci)/(1 - CiZ), that is, each of the factors (z - ci)/(l - CiZ) is in
exactly one of the products.

In this paper we describe a method of obtaining a sequence of functions
(In), containing a subsequence (In) which converges to f*(z), the solution
of Problem I, provided limv-->oofn (z~) = Wk , k = 1,2,... , m.

v

LEMMA 1.2. Let

N m-l m

! = D n [(z - di)/(l - (liZ)] n (1 - (liZ)2/P/ n(1 - ZjZ)2/ p
,

i=1 i~1 1=1

with [di [ < 1, and let Wj = /(Zj), j = 1,... , m, where D is chosen so that
I Wj I < 1. Let f * be the minimizing function for L * determined by the Zj and
the corresponding Wj. Then! -f*.

Proof Define

g(Z) = (1/11[[{ (1 - (liZ)/ fi (1 - ZjZ)r/qLIL (z - di)/(l - (liZ))

X Cn (1 - (liZ)2/q/D(1 - ZjZ)2/q),

and let .\(z) = zg(z)[/(z) n;':1 (1 - zjz)/(z - Zj)]. Then

.\(z) = e [zII (z - di)II (1 - (liZ)]I[ fi (z - Zj) il (1 - Z,Z)).

Noting that .\(1/z) = A(Z), we obtain that (1) .\(z) is real on Iz I = 1, and
(2) Ig(Z)[I/P and Ifez) II[(l - Zjz)/(z - Zj)][I/Q are proportional almost
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everywhere on I Z I = 1. Now (1) and (2) imply that equality holds in
Holder's Inequality [7, pp. 282-3]; hence

If g(z)j(z) fI [(1 - Zjz)/(z - Zj)] dz I= II g Ilq 11/111' = 11/111' .
z~ei9 j=1

We have

(For the first equality, see [12, Theorem 1].) Since f* is minimal for L*,
this yields 11/111' = 11/* lip . By the uniqueness of the minimizing element for
L*,I=/*·

As an immediate consequence of the lemma, we have

THEOREM 1. If a function / of the form

N m~ m

C n [(z - Ci)/(1 - CiZ)] n (1 - CiZ)2/p
/ n (1 - ZjZ)2/P,

i=1 i~1 j=1

for some N ~ m - 1, assumes the assigned values Wj at the corresponding Zj,
then f is the minimizing function f * for L *.

2. DEVELOPMENT OF AN ITERATIVE METHOD FOR PROBLEM IV

The polynomial PI of degree m - 1 satisfying P1(Zk) = Ukl = wkd:IP,
where dk = n;:1 (1 - Zh), is uniquely determined; in fact, by the Lagrange
interpolation formula, P1(Zk) = w(z) L:=1 (Uk1/W'(Zk))/(Z - Zk), where w(z) =
n;':l (z - Zj). Now P1(z) may be written in the form

K1 m-l

C1 n«z - Cil)/(1 - CilZ)) n (1 - CilZ),
i=1 i=1

where cn , C21 ,... , Cx 1 are those zeros of PI lying in I Z I ~ 1. We let
1

B~ll = BiC
) denote n~~1 (z - Cil)/(l - CilZ). For

m-l m
f 1(z) = CIB~l(z) n (1 - Ci1Z)2/P/ n (1 - ZjZ)2/P,

i~1 j=1
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Subsequent steps are outlined in the following paragraphs. Mter new
values Uk2 are substituted for the Ukl( = Wkd:IP, above), the procedure of the
preceding paragraph is repeated, using a polynomial P2 , of the same degree
m - I as PI , to define a correspondingf2(z).

For P2 , the polynomial of degree m - I satisfying Plzk) = Uk2 =
wkd:IP/n:~1 (l - CilZk)l2/PJ-l, we write

m-l

P/z) = C2B~C)(z) IT (I - Ci2Z)
i=1

and define
m-l m

h(z) = C2B~C)(z) IT (l - Ci2Z)2/P/ IT (I - Z;Z)2/ P •

i~1 j~1

Then

Inductively, we define

m-l m

fn(z) = CnB~cJ(z) IT (l - CinZ)2/P/ IT (1 - ZjZ)2/P,
i~1 j~1

where
K"

B~C)(z) = IT [(z - cin)/(l - cinz)]
i~1

is determined by the polynomial

Kn m-l

Pn(z) = Cn IT [(z - Cin)/(l - CinZ)] IT (l - CinZ)
i~1 i=1

satisfying

Then

3. SUFFICIENT CONDITIONS FOR THE ITERATIVE METHOD TO

YIELD THE SOLUTION OF PROBLEM IV

If (Cin):=1 , i = 1,... , m - I, and (Cn):=1 converge, we denote the respec­
tive limits by Ci and C; however, if a convergent subsequence is being con-
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sidered, Ci and C denote the respective limits of the subsequences in question,
(Cin)~l and (Cn)~l . We define p as min [(ljci)[' where the minimum is over
those i such that I Ci I < 1.

We note that each of the sequences

k = 1,... ,m,

is bounded by [(1 + R)j(l - R)]I(m-l)«2/P}-l)I, where R = max; IZ; I, and
each of the sequences (Cin)~~l' i = 1,... , m - 1, is bounded by 1. Hence,
there exists an (nv)~l such that the corresponding subsequence of each of
the above sequences converges. Also each subsequence (B~C)(z))v of
(B~C)(z))n is uniformly bounded on compact subsets of the disk 1z I < p.
Applying the Asco1i-Arzela Theorem, we obtain

LEMMA 2.1. There exists a subsequence (nv) of (n) such that, as v tends
to infinity, each of the corresponding subsequences of the sequences designated
in the preceding paragraph converges, also such that

Kn

B~c!(z) = n (z - Ci.n)/(1 - CinvZ)
i~l

converges as v~ 00, uniformly on compact subsets of the disk [ z I < p.

LEMMA 2.2. If some subsequence of Un(z)) converges at some point Zo
interior to I z I = p, then some subsequence Un ) of Un) converges to a func-
tion of the form v

K m-l m

j(z) = en [(z - Ci)/(1 - CiZ)] n (1 - CiZ)2/P/ n(1 - Z;Z)2/P.
i=l i~l ;~l

The convergence is uniform on compact subsets of the disk I z I < p, and

f"(z ) = lim [n (1 - C· z )(2/V)-1/n (1 - C· _ z )(2/P)-1] w .k '.nv k '.nv 1 k k
V-+C(l i i

Proof There exists a subsequence (nv) of (n) such that each of the sub­
sequences of Lemma 2.1 converges. Thus, a convergent subsequence of
Un(zo)) is determined, and the corresponding (Cn)~=l converges.

m-l / m-l
LEMMA 2.3. If ni=l (1 - Cin/k) ni=l (1 - Ci.nv-lZk) converges to 1 for

k = 1,2,... , m, then some subsequence of Un(z)) converges to f*(z), uniformly
on compact subsets of the disk 1 z [ < p.
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Proof The hypothesis, combined with Lemma 2.2, yields that some
subsequence converges to

[

K ] [m-l ]2/p [ m ]2/p
C n(Z - ci)/(1 - CiZ) n(1 - CiZ) / Ll (1 - ZjZ) ,

which takes on the assigned values Wk at the designated Zk . By Theorem I,
this is justf*(z).

THEOREM 2. If limn->oofn(Zk) = Wk' k = 1,... , m, then limn->oofn(z) =
f*(z).

Proof Since

evidently, limn->oo [n;:-;.l (1 - CinZk)/n;:-;.l (1 - Ci,n-lZk)] = 1. Lemma 2.3
yields the conclusion.

THEOREM 3. Iflimn->oo Cin exists for i = 1,... , m - 1, then limn->oofn(z) =
f*(z).

Proof Since

the hypothesis of the preceding theorem is satisfied.

4. DISCUSSION OF METHOD

In the case p = 2, the functioniJ. obtained in the first step of the procedure
outlined above is actually f* [14, pp. 147,227]. Moreover, P1(z), the polyno­
mial of degree m - 1 used there, actually minimizes

flZI~l If*(z) - P(z) / [ fi (1 - Z;Z)]rI dz I,

For, with I I/n;:l (1 - Z;Z) Ias the weight function [14, Theorem 2, p. 147],
the essentially unique function P of H 2 which minimizes (*) is the polynomial
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P1(Z) of degree m - 1 which interpolates to f*(z) n;:l (1 - Zjz) at the Zk .
We note that P10 minimizes

I[
m-1 m-1] IZf _ f*(z) n(1 - CinZ)/n (1 - Ci,n_1Z) - P(z)jIT (1 - Zjz) Idz I,

121-1 .~1 .=1

PEHz •

It is of some interest to reverse our procedure, that is, to begin with the
functionf* and, by an analogous procedure to attempt to obtain the poly­
nomial Q of degree m - 1 satisfying Q(Zj) = Wj , j = 1,... , m.

Let Zk , Wk, and L* be as in Section 1. Let

where I ail I < 1, i = 1,... , m - 1, and gl(Zk) = Wk, k = 1,... , m. Define
Q1(Z) = Al n~11 (z - ail) n:'~l+l (1 - aiz) and set Uk = d:/PWk' Then
Q1(Zk) = Uk n:'~l (1 - ailzk)1-(z/P).

Let Qz be the unique polynomial of degree m - 1 satisfying

m-1
QZ(Zk) = Uk IT (1 - ailzk),

i=l
say,

m-1
Qz(z) = AzB~a)(z) IT (1 - aiZz),

i~l

Then, for

m-1 m
= AzB~a)(z) IT (1 - aiZz)z/1! j IT (1 - Zjz)z/1!,

i~l j~l

we have
m-1 m-1

g2(Zk) = Wk IT (1 - ai2zk)(z/1!)-1 IT (l - ai1zk)'
i=l i=l

Let Qn be the polynomial of degree m - 1 satisfying

m-1 m-1
Qn(Zk) = Uk IT (1 - ai.n-1Zk) / IT (1 - ai.n-zZk),

i=l i=l
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say

For

we have

SINCLAIR

m-l
Qn(Z) = AnB~a)(z) TI (1 - £linZ).

i~1

m-l m
gn(Z) = Qn(Z) TI (1 - £linZ)(2/P)-I/ TI (1 - ZiZ)2/P

i=1 i=1

m-l m
= AnB~a)(z) TI (1 - £linZ)2/P/ TI (1 - ZiZ)2/P,

i=1 i=1

m-l m-l
gn(Zk) = Wk TI (1 - ilinZk)(2/P)-1 TI (1 - ili.n-lZk)

i-I i=1

THEOREM 4. Suppose, for n = nv ,

converges to 1, for k = 1,... , m. Let ai = 1imv.... '" ain = limv....'" ai n -1' Then
the corresponding (Qn

v
(Z»):1 converges to Q(z), the unique poiy~omial of

degree m - 1 satisfying Q(Zk) = Wk D (1 - Zh)2/P, k = 1,... , m. Also, the
subsequence (gn (z» converges to

v

M [m-l] 2jP [m ] 2jP
g(z) = A JJ [(z - ai)/(l - £liz)] JJ (1 - (iiZ) / n(1 - ZiZ) ,

We note that, under the given hypothesis, the sequence of functions
(Qn (z)/D(l - ZiZ)2jP):=1 converges to the best approximant in H2 (in the
L 2-;ense) to f*(z).

5. POSSIBLE ALTERNATIVE PROCEDURES

In practice, the author recommends a preliminary trial step. If the zeros
off* an lie exterior to I z I = 1, the function f* is obtained immediately.
Let PI be the polynomial of degree m - 1 satisfying P1(Zk) = w~/2dk' If
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all the zeros of P1(z) are exterior to I z I = 1, we may write P1(z) in the
form C TI::~1 (1 - c;z). Then, for

• [ ] 2/p [ m ] 2fp
f(z) = C 2jp n(l - CiZ) [! (1 - ZiZ) ,

we havej(zk) = Wk' k = 1,... , m. By Theorem 1,/* = f
We note that, if P1(z) = ao + a1z + ... + am_1zm-1, with ao > a1 > ... >

am-I> 0, then all zeros of P1(z) lie exterior to I z I = 1 [6, p. 42, problem 2.1,
Enestrom's Theorem]. If, however, 0 < ao < a1 < ... < am-I, then, by an
application of Enestrom's Theorem [6, p. 224, problem 12], all zeros of Pn
lie interior to I z I = 1. In case only a few of the zeros of f* lie interior to
I z I = 1, especially if p is near 2, it might be better to require, in the first
step, that P1(Zk) = w~/2dk . Then

[

M ] 2/p [ m-l ] 2jp
[Pl(Z)]2jP = C2/p !l (z - c;) i=IL (1 - CiZ) .

For
M m-l m

fl(Z) = C2/p n [(z - Ci)/(l - CiZ)] n(l - CiZ)2/PIn (l - Z;Z)2/P,
.-1 .=1 3=1

we have

M

= Wk n [(Zk - cil)/(l - CilZkW-(2/P).

i=1
6. SOME RELATED EXTREMAL FUNCTIONS

Given L*, let L(f*) = {g: g E H p and g(z;) = w;/B<Cl(z;), j = 1,... , m}
where B<cl(z) is the Blaschke product factor TI;(z - ci)/(1 - CiZ) of f*,
extremal for L *. The following result is immediate.

THEOREM 5. The extremalfunctionf* for L(f*) isjustf*/B<Cl.

In the following, 1 ~ p ~ OCJ and 1 ~ p' ~ 00, with p and p' unrelated,
except as specified. Suppose L * = L p * is given, and let L;, = {g: g E H p ,

g(z;) = w?/P'l}. Then L p * and Lt, are said to correspond.
Corollary 6.1 below indicates that, for any assigned z; ,j = 1,... , m, with

I z; I < 1, there exist corresponding functional values Wi such that, for L p *
defined as {f:fE H p andf(z;) = Wi}, the extremalfp* is known. For, given
any set of values U; , the extremal element f2 * for L 2* defined as {f: f E H 2 ,

and f(z;) = U; , j = 1,... , m} is a rational function of the form B2(z) r(z),
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where all the zeros of the rational function r(z) are outside I z I = I, and
where Blz) is a Blaschke product. Then the extremal function g2* for
L 2(J;*) = {g: g E H2 and g(Zj) = ui/B2(zj), j = 1,... , m} is just r(z). Now,
with f(zJ = Wj = (uj/B2(zj))2/P, j = 1, ... , m, the extremal element fp * for
L p* is just [r(z)]2/p.

THEOREM 6. Suppose the extremal element g* for L:, is nonvanishing. If
p = np', where n is a positive integer, then the extremal element fp * for L p*
corresponding to L:, is just (g*)l/n.

Proof We have f*P/P' E L:,. Since g* is nonvanishing, evidently
g*(p' /p) E L p*. Then

yielding II g*P' /p II~; = 11/* II~.

COROLLARY 6.1. If p is an even positive integer and if the extremal ele­
ment g* for L 2* is nonvanishing, then the extremal element fp *for the corre­
sponding L p* is griP.

The proof of the preceding theorem proves also

THEOREM 7. Suppose L:, and L p* correspond and that the respective
extremal elements are fp*, and g p*. If neither1* nor g* vanishes for 1z I < 1,
thenf* = g*<P' /p).

Theorem I insures that examples may be constructed for which the mini­
mizing functions satisfy the hypothesis of Theorem 6 or Theorem 7.
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